Cylindricity of Isometric Immersions into Euclidean Space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometric immersions into Lorentzian products

We give a necessary and sufficient condition for an n-dimensional Riemannian manifold to be isometrically immersed into one of the Lorentzian products Sn×R1 or Hn×R1. This condition is expressed in terms of its first and second fundamental forms, the tangent and normal projections of the vectical vector field. As applications, we give an equivalent condition in a spinorial way and we deduce the...

متن کامل

Isometric Immersions into 3-dimensional Homogeneous Manifolds

We give a necessary and sufficient condition for a 2-dimensional Riemannian manifold to be locally isometrically immersed into a 3-dimensional homogeneous manifold with a 4-dimensional isometry group. The condition is expressed in terms of the metric, the second fundamental form, and data arising from an ambient Killing field. This class of 3-manifolds includes in particular the Berger spheres,...

متن کامل

Double Point Manifolds of Immersions of Spheres in Euclidean Space

Anyone who has been intrigued by the relationship between homotopy theory and diierential topology will have been inspired by the work of Bill Browder. This note contains an example of the power of these interconnections. We prove that, in the metastable range, the double point manifold a self-transverse immersion S n # R n+k is either a boundary or bordant to the real projective space RP n?k. ...

متن کامل

Existence of isometric immersions into nilpotent Lie groups

We establish necessary and sufficient conditions for existence of isometric immersions of a simply connected Riemannian manifold into a two-step nilpotent Lie group. This comprises the case of immersions into H-type groups. MSC 2000: 53C42, 53C30

متن کامل

Minimal Immersions of Kähler Manifolds into Euclidean Spaces

We prove that a minimal isometric immersion of a Kähler-Einstein or homogeneous Kähler manifold into an Euclidean space must be totally geodesic. As an application we show that an open subset of the real hyperbolic plane RH2 cannot be minimally immersed into the Euclidean space. As another application we prove that if an irreducible Kähler manifold is minimally immersed in an Euclidean space th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.2307/2040028